Contador


sábado, 12 de enero de 2019

2.2 Problema de transporte



Problema del transporte o distribución

El problema del transporte o distribución, es un problema de redes especial en programación lineal que se funda en la necesidad de llevar unidades de un punto específico llamado fuente u origen  hacia otro punto específico llamado destino. Los principales objetivos de un modelo de transporte son la satisfacción de todos los requerimientos establecidos por los destinos, y claro está, la minimización de los costos relacionados con el plan determinado por las rutas escogidas.
El procedimiento de resolución de un modelo de transporte se puede llevar a cabo mediante programación lineal común, sin embargo su estructura permite la creación de múltiples alternativas de solución tales como la estructura de asignación o los métodos heurísticos más populares como Vogel, Esquina Noroeste o Mínimos Costos.
Método de aproximación de vogel
El método de aproximación de Vogel es un método heurístico de resolución de problemas de transporte capaz de alcanzar una solución básica no artificial de inicio, este modelo requiere de la realización de un número generalmente mayor de iteraciones que los demás métodos heurísticos existentes con este fin, sin embargo producen mejores resultados iniciales que los mismos.

Algoritmo de vogel

El método consiste en la realización de un algoritmo que consta de 3 pasos fundamentales y 1 más que asegura el ciclo hasta la culminación del método.
Paso 1
Determinar para cada fila y columna una medida de penalización restando los dos costos menores en filas y columnas.
Paso 2
Escoger la fila o columna con la mayor penalización, es decir que de la resta realizada en el "Paso 1" se debe escoger el número mayor. En caso de haber empate, se debe escoger arbitrariamente (a juicio personal).




Paso 3
De la fila o columna de mayor penalización determinada en el paso anterior debemos de escoger la celda con el menor costo, y en esta asignar la mayor cantidad posible de unidades. Una vez se realiza este paso una oferta o demanda quedará satisfecha por ende se tachará la fila o columna, en caso de empate solo se tachará 1, la restante quedará con oferta o demanda igual a cero (0).
Paso 4: de ciclo y excepciones
- Si queda sin tachar exactamente una fila o columna con cero oferta o demanda, detenerse.
- Si queda sin tachar una fila o columna con oferta o demanda positiva, determine las variables básicas en la fila o columna con el método de costos mínimos, detenerse.
- Si todas las filas y columnas que no se tacharon tienen cero oferta y demanda, determine las variables básicas cero por el método del costo mínimo, detenerse.
- Si no se presenta ninguno de los casos anteriores vuelva al paso 1 hasta que las ofertas y las demandas se hayan agotado.

Ejemplo del método de aproximación de vogel.

Por medio de este método resolveremos el ejercicio de transporte resuelto en módulos anteriores mediante programación lineal.
El problema
Una empresa energética colombiana dispone de cuatro plantas de generación para satisfacer la demanda diaria eléctrica en cuatro ciudades, Cali, Bogotá, Medellín y Barranquilla. Las plantas 1,2,3 y 4 pueden satisfacer 80, 30, 60 y 45 millones de KW al día respectivamente. Las necesidades de las ciudades de Cali, Bogotá, Medellín y Barranquilla son de 70, 40, 70 y 35 millones de Kw al día respectivamente.

Los costos asociados al envío de suministro energético por cada millón de KW entre cada planta y cada ciudad son los registrados en la siguiente tabla.


Formule un modelo de programación lineal que permita satisfacer las necesidades de todas las ciudades al tiempo que minimice los costos asociados al transporte.
Solución paso a paso

El primer paso es determinar las medidas de penalización y consignarlas en el tabulado de costos, tal como se muestra a continuación.

El paso siguiente es escoger la mayor penalización, de esta manera:           


El paso siguiente es escoger de esta columna el menor valor, y en una tabla paralela se le asigna la mayor cantidad posible de unidades, podemos observar como el menor costo es "2" y que a esa celda se le pueden asignar como máximo 60 unidades "que es la capacidad de la planta 3".

Dado que la fila de la "Planta 3" ya ha asignado toda su capacidad (60 unidades) esta debe desaparecer.
Se ha llegado al final del ciclo, por ende se repite el proceso
Al finalizar esta iteración podemos observar como el tabulado queda una fila sin tachar y con valores positivos, por ende asignamos las variables básicas y hemos concluido el método.

Los costos asociados a la distribución son:


Método de la esquina noroeste

El método de la esquina Noroeste es un algoritmo heurístico capaz de solucionar problemas de transporte o distribución, mediante la consecución de una solución básica inicial que satisfaga todas las restricciones existentes, sin que esto implique que se alcance el costo óptimo total.

Algoritmo de resolución de la esquina noroeste


Se parte por esbozar en forma matricial el problema, es decir, filas que representen fuentes y columnas que representen destinos, luego el algoritmo debe de iniciar en la celda, ruta o esquina Noroeste de la tabla (esquina superior izquierda).

Paso 1:
En la celda seleccionada como esquina Noroeste se debe asignar la máxima cantidad de unidades posibles, cantidad que se ve restringida ya sea por las restricciones de oferta o de demanda. En este mismo paso se procede a ajustar la oferta y demanda de la fila y columna afectada, restándole la cantidad asignada a la celda.
Paso 2:
En este paso se procede a eliminar la fila o destino cuya oferta o demanda sea 0 después del "Paso 1", si dado el caso ambas son cero arbitrariamente se elige cual eliminar y la restante se deja con demanda u oferta cero (0) según sea el caso.


Paso 3:
Una vez en este paso existen dos posibilidades, la primera que quede un solo renglón o columna, si este es el caso se ha llegado al final el método, "detenerse".
La segunda es que quede más de un renglón o columna, si este es el caso iniciar nuevamente el "Paso 1".

Ejemplo del método de la esquina noroeste

Por medio de este método resolveremos el problema de transporte propuesto y resuelto en módulos anteriores mediante programación lineal.
El problema
Una empresa energética colombiana dispone de cuatro plantas de generación para satisfacer la demanda diaria eléctrica en cuatro ciudades, Cali, Bogotá, Medellín y Barranquilla. Las plantas 1,2,3 y 4 pueden satisfacer 80, 30, 60 y 45 millones de KW al día respectivamente. Las necesidades de las ciudades de Cali, Bogotá, Medellín y Barranquilla son de 70, 40, 70 y 35 millones de KW al día respectivamente. 

Los costos asociados al envío de suministro energético por cada millón de KW entre cada planta y cada ciudad son los registrados en la siguiente tabla. 
Formule un modelo de programación lineal que permita satisfacer las necesidades de todas las ciudades al tiempo que minimice los costos asociados al transporte.
Solución paso a paso

Ahora la cantidad asignada a la esquina noroeste es restada a la demanda de Cali y a la oferta de la "Planta 1", en un procedimiento muy lógico. Dado que la demanda de Cali una vez restada la cantidad asignada es cero (0), se procede a eliminar la columna. El proceso de asignación nuevamente se repite.
Continuamos con las iteraciones.
En este caso nos encontramos frente a la elección de la fila o columna a eliminar (tachar), sin embargo podemos utilizar un criterio mediante el cual eliminemos la fila o columna que presente los costos más elevados. En este caso la "Planta 2".

Nueva iteración.
Una vez finalizada esta asignación, se elimina la "Planta 3" que ya ha sido satisfecha con la asignación de 60 unidades, por ende nos queda una sola fila a la cual le asignamos las unidades estrictamente requeridas y hemos finalizado el método.
El cuadro de las asignaciones (que debemos desarrollarlo paralelamente) queda así:

Los costos asociados a la distribución son:
El costo total es evidentemente superior al obtenido mediante Programación Lineal y el Método de Aproximación de Vogel, lo cual demuestra lo enunciado en la descripción del algoritmo que cita que no obtiene siempre la mejor solución, sin embargo presenta un cumplimiento de todas las restricciones y una rapidez de elaboración, lo cual es una ventaja en problemas con innumerables fuentes y destinos en los cuales no nos importe más que satisfacer las restricciones

Método del costo mínimo

El método del costo mínimo o método de los mínimos costos es un algoritmo desarrollado con el objetivo de resolver problemas de transporte o distribución, arrojando mejores resultados que métodos como el de la esquina noroeste, dado que se enfoca en las rutas que presentan menores costos.
El diagrama de flujo de este algoritmo es mucho más sencillo que los anteriores, dado que se trata simplemente de la asignación de la mayor cantidad de unidades posibles (sujeta a las restricciones de oferta y/o demanda) a la celda menos costosa de toda la matriz hasta finalizar el método.
Algoritmo del costo mínimo
Paso 1:
De la matriz se elige la ruta (celda) menos costosa (en caso de un empate, este se rompe arbitrariamente) y se le asigna la mayor cantidad de unidades posible, cantidad que se ve restringida ya sea por las restricciones de oferta o de demanda. En este mismo paso se procede a ajustar la oferta y demanda de la fila y columna afectada, restándole la cantidad asignada a la celda.
Paso 2:
En este paso se procede a eliminar la fila o destino cuya oferta o demanda sea 0 después del "Paso 1", si dado el caso ambas son cero arbitrariamente se elige cual eliminar y la restante se deja con demanda u oferta cero (0) según sea el caso.
Paso 3:
Una vez en este paso existen dos posibilidades, la primera que quede un solo renglón o columna, si este es el caso se ha llegado al final el método, "detenerse".
La segunda es que quede más de un renglón o columna, si este es el caso iniciar nuevamente el "Paso 1".

Ejemplo del método del costo mínimo

Por medio de este método resolveremos el problema de transporte propuesto y resuelto en módulos anteriores mediante programación lineal.
El problema
Una empresa energética colombiana dispone de cuatro plantas de generación para satisfacer la demanda diaria eléctrica en cuatro ciudades, Cali, Bogotá, Medellín y Barranquilla. Las plantas 1,2,3 y 4 pueden satisfacer 80, 30, 60 y 45 millones de KW al día respectivamente. Las necesidades de las ciudades de Cali, Bogotá, Medellín y Barranquilla son de 70, 40, 70 y 35 millones de KW al día respectivamente.
Los costos asociados al envío de suministro energético por cada millón de KW entre cada planta y cada ciudad son los registrados en la siguiente tabla. 

Formule un modelo de programación lineal que permita satisfacer las necesidades de todas las ciudades al tiempo que minimice los costos asociados al transporte.


SOLUCIÓN PASO A PASO

Luego esa cantidad asignada se resta a la demanda de Bogotá y a la oferta de la "Planta 3", en un proceso muy lógico. Dado que Bogotá se queda sin demanda esta columna desaparece, y se repite el primer proceso.

Nuevo proceso de asignación

Una vez finalizado el cuadro anterior nos daremos cuenta que solo quedará una fila, por ende asignamos las unidades y se ha terminado el método.

El cuadro de las asignaciones (que debemos desarrollarlo paralelamente) queda así:

Los costos asociados a la distribución son:
 En este caso el método del costo mínimo presenta un costo total superior al obtenido mediante Programación Lineal y el Método de Aproximación Vogel, sin embargo comúnmente no es así, además es simple de desarrollar y tiene un mejor rendimiento en cuanto a resultados respecto al Método de la Esquina Noroeste.


Método húngaro

El método Húngaro es un método de optimización de problemas de asignación, conocido como tal gracias a que los primeros aportes al método clásico definitivo fueron de Dénes König y Jenő Egerváry dos matemáticos húngaros. El algoritmo tal como se detallará a continuación está diseñado para la resolución de problemas de minimización únicamente, será entonces cuestión de agregar un paso adicional para abordar ejercicios de maximización.
Algoritmo húngaro, paso 1
Antes que nada cabe recordar que el método húngaro trabaja en una matriz de costos n*m (en este caso conocida como matriz m*m, dado que el número de filas es igual al número de columnas n = m), una vez construida esta se debe encontrar el elemento más pequeño en cada fila de la matriz.
Algoritmo húngaro, paso 2
Una vez se cumple el procedimiento anterior se debe construir una nueva matriz n*m, en la cual se consignarán los valores resultantes de la diferencia entre cada costo y el valor mínimo de la fila a la cual cada costo corresponde (valor mínimo hallado en el primer paso).
Algoritmo húngaro, paso 3
Este paso consiste en realizar el mismo procedimiento de los dos pasos anteriores referidos ahora a las columnas, es decir, se halla el valor mínimo de cada columna, con la diferencia que este se halla de la matriz resultante en el segundo paso, luego se construirá una nueva matriz en la cual se consignarán los valores resultantes de la diferencia entre cada costo y el valor mínimo de la columna a la cual cada costo corresponde, matriz llamada "Matriz de Costos Reducidos".
Algoritmo húngaro, paso 4
A continuación se deben de trazar líneas horizontales o verticales o ambas (únicamente de esos tipos) con el objetivo de cubrir todos los ceros de la matriz de costos reducidos con el menor número de líneas posibles, si el número de lineas es igual al número de filas o columnas se ha logrado obtener la solución óptima (la mejor asignación según el contexto de optimización), si el número de líneas es inferior al número de filas o columnas se debe de proceder con el paso 5.
Algoritmo húngaro, paso 5
Este paso consiste en encontrar el menor elemento de aquellos valores que no se encuentran cubiertos por las líneas del paso 4, ahora se restará del restante de elementos que no se encuentran cubiertos por las líneas; a continuación este mismo valor se sumará a los valores que se encuentren en las intersecciones de las líneas horizontales y verticales, una vez finalizado este paso se debe volver al paso 4.

Resolución de un problema de asignación mediante el método húngaro

El problema
La compañía de manufactura "Jiménez y Asociados" desea realizar una jornada de mantenimiento preventivo a sus tres máquinas principales A, B y C. El tiempo que demanda realizar el mantenimiento de cada máquina es de 1 día, sin embargo la jornada de mantenimiento no puede durar más de un día, teniendo en cuenta que la compañía cuenta con tres proveedores de servicios de mantenimiento debe de asignarse un equipo de mantenimiento a cada máquina para poder cumplir con la realización del mantenimiento preventivo. Teniendo en cuenta que según el grado de especialización de cada equipo prestador de servicios de mantenimiento el costo de la tarea varía para cada máquina en particular, debe de asignarse el equipo correcto a la máquina indicada con el objetivo de minimizar el costo total de la jornada. Los costos asociados se pueden observar en la siguiente tabla:
Paso 1
Encontramos el menor elemento de cada fila
Paso 2
Construimos una nueva matriz con las diferencias entre los valores de la matriz original y el elemento menor de la fila a la cual corresponde.
Paso 3
En la matriz construida en el paso anterior se procede a efectuar el paso 1 esta vez en relación a las columnas, por ende escogemos el elemento menor de cada columna. Igualmente construimos una nueva matriz con la diferencia entre los valores de la matriz 2 y el elemento menor de la columna a la cual corresponde cada valor.
Paso 4
En este paso trazaremos la menor cantidad de combinaciones de líneas horizontales y verticales con el objetivo de cubrir todos los ceros de la matriz de costos reducidos.
Como se puede observar el menor número de líneas horizontales y/o verticales necesarias para cubrir los ceros de la matriz de costos reducidos es igual a 2, por ende al ser menor que el número de filas o columnas es necesario recurrir al paso 5.
Paso 5
En este paso seleccionamos el menor elemento de los elementos no subrayados.
Luego se procede a restarse de los elementos no subrayados y a adicionarse a los elementos ubicados en las intersecciones de las líneas, en este caso existe una única intersección (3).
Ahora ya efectuado este paso pasamos al paso 4.
Ahora observamos cómo se hace necesario trazar tres líneas (la misma cantidad de filas o columnas de la matriz) por ende se ha llegado al tabulado final, en el que por simple observación se determina las asignaciones óptimas.

Por ende la asignación que representa el menor costo para la jornada de mantenimiento preventivo determina que el Equipo 1 realice el mantenimiento de la Máquina 1, el Equipo 2 realice el mantenimiento de la Máquina 3 y el Equipo 3 realice el mantenimiento de la Máquina 2, jornada que tendrá un costo total de 17 unidades monetarias.

Conclusión:

Hoy en día, la mayoría de las industrias a nivel  mundial, utilizan este tipo de estrategias para lograr un mayor nivel de competividad comercial, ya que, se logra obtener las mejores rutas para incrementar la economía y estabilidad empresarial.
El método de transporte es tan solo una parte de todo el sistema de distribución que se encuentra dentro de la compañía. Es muy difícil resolver o encontrar el mejor programa de transporte que interactúe en cuestiones de servicio y bajo costo al mismo tiempo. Esa área de le empresa requiere de una constante atención y un análisis muy preciso para implementar todos los cambios que genere la solución factible del método.
El uso de este modelo le permite a la empresa a mejorar su gestión administrativa, al tener información valiosa que le permitirá tomar mejores decisiones relacionadas al incremento de su rentabilidad y disminución de sus costos de envío, generando una ventaja frente a la competencia al ser más efectivos.











No hay comentarios:

Publicar un comentario